Microscale locomotion in a nematic liquid crystal


Microorganisms often encounter anisotropy, for example in mucus and biofilms. We study how anisotropy and elasticity of the ambient fluid affects the speed of a swimming microorganism with a prescribed stroke. Motivated by recent experiments on swimming bacteria in anisotropic environments, we extend a classical model for swimming microorganisms, the Taylor swimming sheet, actuated by small-amplitude traveling waves in a three-dimensional nematic liquid crystal without twist. We calculate the swimming speed and entrained volumetric flux as a function of the swimmer’s stroke properties as well as the elastic and rheological properties of the liquid crystal. These results are then compared to previous results on an analogous swimmer in a hexatic liquid crystal, indicating large differences in the cases of small Ericksen number and in a nematic fluid when the tumbling parameter is near the transition to a shear-aligning nematic. We also propose a novel method of swimming in a nematic fluid by passing a traveling wave of director oscillation along a rigid wall.

Madison S. Krieger, Saverio E. Spagnolie and Thomas R. Powers, “Microscale locomotion in a nematic liquid crystal”, Soft Matter, 2015, 11, 9115 – 9125, arXiv, PDF


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s